Down-regulation of pancreatic and duodenal homeobox-1 by somatostatin receptor subtype 5: a novel mechanism for inhibition of cellular proliferation and insulin secretion by somatostatin
نویسندگان
چکیده
Somatostatin (SST) is a regulatory peptide and acts as an endogenous inhibitory regulator of the secretory and proliferative responses of target cells. SST's actions are mediated by a family of seven transmembrane domain G protein-coupled receptors that comprise five distinct subtypes (SSTR1-5). SSTR5 is one of the major SSTRs in the islets of Langerhans. Homeodomain-containing transcription factor pancreatic and duodenal homeobox-1 (PDX-1) is essential for pancreatic development, β cell differentiation, maintenance of normal β cell functions in adults and tumorigenesis. Recent studies show that SSTR5 acts as a negative regulator for PDX-1 expression and that SSTR5 mediates somatostatin's inhibitory effect on cell proliferation and insulin expression/excretion through down-regulating PDX-1 expression. SSTR5 exerts its inhibitory effect on PDX-1 expression at both the transcriptional level by down-regulating PDX-1 mRNA and the post-translational level by enhancing PDX-1 ubiquitination. Identification of PDX-1 as a transcriptional target for SSTR5 may help in guiding the choice of therapeutic cancer treatments.
منابع مشابه
Immunohistochemical characterization of pancreatic duodenal homeobox protein-1, neurogenin-3 and insulin protein expressions in islet-mesenchymal cell in vitro interactions from injured adult pancreatic tissues: a morphochronological evaluation
Objective(s): The use of a co-culture of islets with mesenchymal stromal cells (MSCs) is a promising therapy in islet transplantation to revert hyperglycaemia, but the resulting insulin-producing cells (IPCs) express low levels of pancreas endocrine developmental genes. This study aims to investigate the morphochronology of a co-culture of islets with MSCs from injured adult pancreata, and char...
متن کاملThe regulator of G-protein signaling RGS16 promotes insulin secretion and β-cell proliferation in rodent and human islets
OBJECTIVE G protein-coupled receptor (GPCR) signaling regulates insulin secretion and pancreatic β cell-proliferation. While much knowledge has been gained regarding how GPCRs are activated in β cells, less is known about the mechanisms controlling their deactivation. In many cell types, termination of GPCR signaling is controlled by the family of Regulators of G-protein Signaling (RGS). RGS pr...
متن کاملGalanin potentiates supramaximal caerulein-stimulated pancreatic amylase secretion via its action on somatostatin secretion.
Galanin inhibits pancreatic amylase secretion from mouse lobules induced by physiological concentrations of caerulein via an insulin-dependent mechanism. We aimed to determine the effect and elucidate the mechanism of action of exogenous galanin on pancreatic amylase secretion induced by supramaximal concentrations of caerulein. Amylase secretion from isolated murine pancreatic lobules was meas...
متن کاملManagement of the hormonal syndrome of neuroendocrine tumors
Gastroenteropancreatic neuroendocrine tumors (GEP/NET) are unusual and rare neoplasms that present many clinical challenges. They characteristically synthesize store and secrete a variety of peptides and neuroamines which can lead to the development of distinct clinical syndrome, however many are clinically silent until late presentation with mass effects. Management strategies include surgery ...
متن کاملSomatostatin receptor type 5 modulates somatostatin receptor type 2 regulation of adrenocorticotropin secretion.
Somatostatin inhibits adrenocorticotropin (ACTH) secretion from pituitary tumor cells. To assess the contribution of somatostatin receptor subtype 5 (SST5) to somatostatin receptor subtype 2 (SST2) action in these cells, we assessed multipathway responses to novel highly monoreceptor-selective peptide agonists and multireceptor agonists, including octreotide and somatostatin-28. Octreotide and ...
متن کامل